```
Nom:
                                                                     gr:
Exercices supplémentaires pour laboratoire chap 1 et 2
1A- Il faut préparer 100 mL d'une solution aqueuse de KCl dont la concentration sera de 32
000 ppm. Combien de q de soluté auras-tu besoin ? CALCULS avec unités :
Concentration= 32 000 ppm 32 000 ppm = 32 000 g
                                                              32 000 g =
Volume désirée = 100 mL
                                          1 000 000 g
                                                            1 000 000 g
100 mL d'eau = 100 q
                                                                                           Rép: 3.2 g
1B- À partir de 1A, de la solution KCl à 32 000 ppm, tu veux faire 100 mL une solution dilué à
0.02M. Combien de mL de solution concentré devras-tu prendre ? CALCULS avec unités :
C1= 32 000 ppm
                      si <u>1 mole de KCl</u> = <u>0.02 mole</u> x = 1.49 g si <u>1.49 g</u>
                                                                           = x q
                          74,5513 g
                                                                   1000 q
                                                                           1 000 000 g
C2 = 0.02 M = 1490 ppm
V2 = 100 \text{ mL}
                                              V1
                                                   = C2
1 mole de KCI = 74,5513 g
                                  32 000 ppm . V1
                                                   = 1490 ppm 100 mL
                                                                                     = 4.656 \, \text{mL}
                                                                                                      1
L = 1000 \text{ mL} = 1000 \text{ g}
                                  32 000 ppm.
                                                          32 000 ppm
                                                                  Rép: V1 = 4,66 mL et 95.33 mL d'eau
2A- Il faut préparer 100 mL d'une solution de NaCl dont la concentration sera de 0,773 M.
Combien de g de soluté auras-tu besoin ? CALCULS avec unités
Concentration= 0.773 mol/L
                            si 1 mole de NaCl = 0.773 mole x = 45.17 g si 45.17 g = x g = 4.52 g
Volume désirée = 100 mL
                                                                            1000 mL 100 mL
                                   58.44 q
1 mole de NaCl = 58.44 g Rép: dissoudre 4.52 g dans 50 mL, lorsque dissous, ajouter de l'eau jusqu'à 100 mL
2B- À partir de 2A, de la solution NaCl à 0,773 M, tu veux faire 50 mL une solution dilué à
0.3M. Combien de mL de solution concentré devras-tu prendre ? CALCULS avec unités :
C1= 0.773 mol/L
                                       C1
                                                  V1 = C2
V1 =
                                    0.773 \text{ mol/L} . V1 = 0.3 \text{ mol/L} . 50 mL
C2= 0.3 \text{ mol/L}
                                    0.773 mol/L
                                                            0.773 mol/L
V2 = 50 \text{ mL}
                                                                  Rép: V1 = 19.4 mL et 30.6 mL d'eau
3A- Il faut préparer, par dissolution, 50 mL d'une solution de Mg(NO<sub>3</sub>)<sub>2</sub> à une concentration de
0.155 M. Combien de g de soluté auras-tu besoin ? CALCULS avec unités :
Concentration= 0.155 mol/L
                            si 1 mole de Mg(NO<sub>3</sub>)<sub>2</sub> = 0.155 mole x = 22.99 g si 22.99 g = x g = 1.15 g
Volume désirée = 50 mL
                                                                               1000 mL 50 mL
1 mole de NaCl = 148.3 g Rép : dissoudre 1.15 g dans 25 mL, lorsque dissous, ajouter de l'eau jusqu'à 50 mL
3B- À partir de 3A, de la solution Mg(NO<sub>3</sub>)<sub>2</sub> à 0,155 M, tu veux faire 100 mL une solution dilué
à 0.1M. Combien de mL de solution concentré devras-tu prendre ? CALCULS avec unités :
C1= 0.155 mol/L
                                                  V1 = C2
                                       C1
V1 =
                                    0.155 mol/L . V1
                                                      = 0.1 \text{ mol/L}
                                                                    . 100 mL
C2= 0.1 \text{ mol/L}
                                    0.155 mol/L
                                                            0155 mol/L
V2 = 100 \text{ mL}
                                                                   Rép: V1 = 64.52 mL et 35.48 mL d'eau
4A- Préparer, par dissolution, 50 mL d'une solution de K2SO4 à 0,85 M. Combien de g de
soluté auras-tu besoin? CALCULS avec unités :
Concentration= 0.85 mol/L
                           si 1 mole de K_2SO_4 = 0.85 mole x = 148.12 g si 148.12 g = x g = 7.4 g
Volume désirée = 50 mL
                                 174.259 g
                                                                          1000 mL 50 mL
1 mole de K<sub>2</sub>SO<sub>4</sub> = 174.259 g Rép: dissoudre 7.4 g dans 25 mL, lorsque dissous, ajouter l'eau jusqu'à 50 mL
4B- À partir de 4A, de la solution K<sub>2</sub>SO<sub>4</sub> à 0,85 M, tu veux faire 100 mL une solution dilué à
50 000 PPM. Combien de mL de solution concentré devras-tu prendre ? CALCULS avec
unités :
C1= 0.85 \text{ mol/L si 1} mole de K_2SO_4 = 0.85 mole
                                                             si <u>148.</u>12 g
                                                                           = x g = 148 120 ppm
                                              x = 148.12 g
                   174.259 g
                                                                  1000 a
                                                                           1 000 000 g
C2= 50 000 ppm
V2= 100 mL
                                               V1 = C2
1 mole de KCI = 74,5513 g
                             148 120 ppm . V1
                                              = 50 000 ppin 100 mL
                                                                                     = 33.75 \, \text{mL}
                                                         148 120 ppm
L = 1000 \text{ mL} = 1000 \text{ g}
                                  148 120 ppm
```

Rép: V1 = 33.75 mL et 66.24 mL d'eau

NOM:_____

gr:_____

Balancez les équations suivantes

1)
$$_{1}$$
 HCl + $_{1}$ KOH $_{1}$ KCl + $_{1}$ H₂O

2)
$$_2$$
 NaCl + $_1$ H₂SO₄ \longrightarrow $_1$ Na₂SO₄ + $_2$ HCl

3)
$$_1$$
 Na₂CO₃ + $_1$ CaCl₂ \longrightarrow $_2$ NaCl + $_1$ CaCO₃

4)
$$_{1}$$
 $C_{10}H_{16} + _{8}Cl_{2}$ \longrightarrow $_{16}HCl + _{10}C$

5)
$$_{1}$$
 CaC_{2} + $_{2}$ $H_{2}O$ \longrightarrow $_{1}$ $Ca(OH)_{2}$ + $_{1}$ $C_{2}H_{2}$

6)
$$_{-3}$$
 Fe + $_{-4}$ H₂O $_{---}$ $_{-1}$ Fe₃O₄ + $_{-4}$ H₂

7)
$$_4$$
 NH₃ + $_5$ O₂ $_$ 4_NO + $_6$ H₂O

8)
$$_1$$
 Ca(OH)₂ + $_2$ HNO₃ $_1$ Ca(NO₃)₂ + $_2$ H₂O

9)
$$_{1}$$
MnO₄ + ${1}$ H₂C₂O₄ + $_{3}$ H₂ \longrightarrow $_{1}$ _Mn + $_{2}$ CO₂ + $_{4}$ _H₂O (2 1 1 3 7 1 2 6 8 4)

11)
$$_4$$
 NH₃ + $_5$ O₂ $_4$ NO + $_6$ H₂O

12)
$$_4$$
 CO + $_1$ Fe₃O₄ \longrightarrow $_4$ CO₂ + $_3$ Fe

14)
$$_1$$
 CH₄ + $_2$ H₂O \longrightarrow $_1$ CO₂ + $_4$ H₂

15)
$$_{2}$$
 NaCl + $_{1}$ H₂SO₄ \longrightarrow $_{2}$ HCl + $_{1}$ Na₂SO₄

17)
$$_{1}$$
 Fe + $_{2}$ $_{H_{3}O^{+}}$ \longrightarrow $_{1}$ Fe²⁺ + $_{1}$ $_{1}$ H₂+ $_{2}$ $_{2}$ H₂O

18)
$$_{1}$$
 $Cu^{2+} + _{2}$ OH^{-} \longrightarrow $_{1}$ $Cu(OH)_{2}$

neutralisation. Sel à écrire

1)
$$\underline{1}$$
 HCl + $\underline{1}$ NaOH \longrightarrow $\underline{1}$ NaCl + $\underline{1}$ H₂O

2)
$$_2$$
_ $_H_3PO_4 + _3$ _ $_Ca(OH)_2 \longrightarrow ____Ca_3(PO_4)_2 + _6__H_2O$

3)
$$_2$$
_ HCOOH + $_1$ _Mg(OH) $_2$ \longrightarrow $_1$ _Mg(HCOO) $_2$ + $_2$ _ H $_2$ O

4)
$$_{1}$$
 $_{1}$ $_{2}$ $_{3}$ $_{4}$ + $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ + $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$

5)
$$_3$$
 HClO₄ + $_1$ Al(OH)₃ \longrightarrow $_1$ Al(ClO₄)₃ + $_3$ H₂O

6)
$$_{1}$$
 $_{HBr}$ + $_{1}$ $_{NH_{4}OH}$ \longrightarrow $_{1}$ $_{NH_{4}Br}$ + $_{1}$ $_{1}$ $_{H_{2}O}$

7)
$$_2$$
 HNO₃ + $_1$ Ba(OH)₂ \longrightarrow $_1$ Ba(NO₃)₂ + $_2$ H₂O

9)
$$_2$$
 HF + $_1$ Sr(OH)₂ \longrightarrow $_1$ SrF₂ + $_2$ H₂O

10)
$$_{1}$$
 $_{1}$ $_{2}$ Se + $_{1}$ $_{2}$ Pb(OH) $_{2}$ $\longrightarrow _{1}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{2}$ $_{3}$ $_{4}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$ $_{4}$ $_{4}$ $_{5}$ $_{4}$

12)
$$_2$$
 $_{_3}PO_4 + _{_3}Ba(OH)_2 \longrightarrow _{_1}Ba_3(PO_4)_2 + _{_6} H_2O$

14)
$$_{2}$$
 $_{6}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{7}$ $_{8}$ $_{7}$ $_{8$

15)
$$_2$$
 CH₃COOH + $_1$ Cu(OH)₂ \longrightarrow 1 Cu(CH₃COO)₂ + $_2$ H₂O

16)
$$_{1}$$
 $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3$

17)
$$_3$$
 $_{1}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{2}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{2}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{4}$ $_{3}$ $_{4}$ $_{3}$ $_{3}$ $_{4}$ $_{4}$ $_{3}$ $_{4}$

18)
$$_{1}$$
 HNO₂ + $_{1}$ AgOH \longrightarrow 1_ AgNO₂ + _1__ H₂O

19)
$$_3$$
 HCl + $_1$ Sc(OH)₃ \longrightarrow $_1$ ScCl₃ + $_3$ H₂O

NOM:	groupe:
	Stoupe:

En utilisant le tableau en bas de la page, dites si les composés suivants sont solubles (S) ou peu solubles (P) (précipité). Balancez les molécules et nommez les.

`•	• ′	Formule	solubili	té nom scientifique
Exem	ple :			•
Li	PO_4	Li ₃ PO ₄	S	phosphate de trilithium
Ca	OH	$Ca(OH)_2$	P	dihydroxyde de calcium
Mg	CO_3	$MgCO_3$	P	carbonate de magnésium
Ga	S	Ga_2S_3	P	trisulfure de digallium
Sn^{+2}	Br	$SnBr_2$	S	dibromure d'étain
Ag	ClO_3	AgClO ₃	S	chlorate d'argent
Hg_2^{2+}	SO_3	Hg_2SO_3	P	sulfite de dimercure
Tl^+	CrO_4	Tl_2CrO_4	S	chromate de dithalium
Ba	OH	$Ba(OH)_2$	S	dihydroxyde de baryum
As^{3+}	NO_3	$As(NO_3)_3$	S	trinitrate d'arsenic
NH_4	I	NH_4I	S	iodure d'ammonium
H	C1	HC1	S	chlorure d'hydrogène

Tableau 14 La solubilité (dans l'eau) de quelques composés ioniques courants

	La solabilità (c		1 1 1			4000						1
							lons po	ositifs (cations)			
			Li ⁺ Na ⁺						Éléments de transition			
		, K+						et				
	ns négatifs (anions)		Rb+						Ga ³⁺ Ge ⁺			
	,,		Cs+					ı	Bi ³⁺ As ³⁺			
			Fr+						As ⁵⁺ In ³⁺	,		Ag ⁺
			H+						Sn ²⁺ Sn ⁴⁺			Cu+
			NH ₄ +	Be ²⁺ Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺	Ra ²⁺	Al ³⁺	TI+	Pb ²⁺	Hg ₂ ²⁺
CH3COO-	NO ₃ -	CIO ₃ -										
	SO ₄ 2-				(212g)		(1) 1 - 1 - 1 - 1					
SO ₃ ²⁻	PO ₄ 3-	CO ₃ ²⁻										
\$f	S ²⁻			-	ř				oren mal a			
b · · · · · · · · · · · · · · · · · · ·	0H-			8,00	lgoric				ni sou ab ai			
CI-	Br ⁻	-										
	CrO ₄ 2-											Ag ⁺

Peu soluble à 25 °C : formation d'un précipité.

NOM:	gr :
	8

STE-SE Chap 1 concept 3.8 Calculez la quantité d'énergie

1- Au cours d'une expérience, on neutralise 0.1 mol/L d'acide nitrique (HNO₃) à l'aide d'une solution d'hydroxyde de sodium (NaOH). Si la production de 18 g d'eau produit 33 kJ, calculez l'énergie dégagée avec le 0.1 mol/L.

2- Combien d'énergie sera produite lorsqu'un moteur qui brûle de l'essence aura dégagé 10 m³ de CO₂ ? (essence = octane = C₈H₁₈) (1 m³ de CO₂ pèse 1.98 kg) (Combustion octane = 5460kJ/mole) 2C₈H₁₈ + 25 O₂ → 16CO₂ + 18 H₂O

- Si 1 m 3 CO $_2$ = 1.98 kg 228 g 800 g 704 g 324 g

- $10 \text{ m}^3 \text{ CO}_2 = 19.8 \text{ kg} = 19800 \text{ g}$ si $16 \text{ moles CO}_2 = 704 \text{ g donc}$ 19800 g = 450 moles

- $56.25 \text{ C}_8\text{H}_{18} + 703.125 \text{ O}_2 \longrightarrow 450 \text{ CO}_2 + 506.25 \text{ H}_2\text{O}$

- si 1 mole de C_8H_{18} dégage 5460 kJ, 56.25 moles de C_8H_{18} dégagera $\underline{307125}$ kJ

3- Combien de kJ sera dégagée pour produire 100 grammes d'eau lors de la combustion du propane (C_3H_8). (la combustion du propane dégage 2046 kJ par mole et produit du dioxyde de carbone et de l'eau) 1 C_3H_8+5 $O_2 \longrightarrow 3CO_2+4$ H_2O 4 moles $H_2O=72$ g donc 100 g = 5.5555 moles 44 g 160 g 132 g 72 g 1.38888 C_3H_8+5 $O_2 \longrightarrow 3CO_2+4$ H_2O donc 1.3888 moles de $C_3H_8=2841.66$ kJ

4- Combien d'énergie électrique sera utilisée pour produire 1 m³ de dihydrogène à partir de l'eau ? (1 mole de dihydrogène = 22.4136 L et nécessite 285.8 kJ.)

2 H₂O → 2 H₂ + O₂ dans 1 m³ il y a 1000 L donc il y a 44.64 moles de H₂ si 1 mole de H₂ nécessite 285.8kJ 44.61577 moles demandera 12758.93 kJ

5- Pour séparer la rouille en fer et en dioxygène, il faut 832 kJ par mole de rouille. Si on utilise de l'anthracite (charbon) pour chauffer 1 tonne de rouille dans un four d'une fonderie, en sachant que 1 kg de charbon dégage 14000 kJ, combien de kg de charbon faudra-t-il pour séparer la rouille en fer et dioxygène et combien de fer sera obtenu à partir de la tonne de rouille ?

```
Rouille = Fe_2O_3 = 160 g il faut 832 kJ 1 tonne de rouille = 1000000 g 1000000 g divisé par 160 = 6250 moles de rouille x 832 = il faut 5200000 kJ 5200000 kJ divisé par 14000 kJ = 371 kg de charbon
```

à compléter pour la masse de fer obtenu.

- 6- La photosynthèse demande 2803 kJ d'énergie lumineuse pour produire 1 mole de glucose. Combien de jours d'ensoleillement (12 heures par jour) un arbre aura besoin pour augmenter sa masse de 1 tonne si l'arbre reçoit 200 kJ de soleil par heure ? photosynthèse 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
 1 mole de C₆H₁₂O₆ = 180 g 1 tonne = 1000000 g divisé par 180 = 5555.5555 moles 5555.5555 moles x 2803 kJ = 15572222 kJ de soleil divisé par (12 x 200 kJ) = 6488.43 jours
- 7- Combien de grammes d'eau peut-on chauffer de 1 °C avec 1 kg de méthane ? (il faut 4.18 j pour chauffer 1 g d'eau de 1 °C, le méthane donne 830 kJ/mole) Méthane = CH₄ = 16 g 1 kg = 1000 g divisé par 16 g = 62.5 moles x 830 kJ =51875 kJ 51875 kJ divisé par 0.00418 = 12410287 g ou 12.4 tonnes

8- Lorsque tu manges 1 kg de sucre (C₁₂H₂₂O₁₁), combien d'énergie ton corps va dégager ? L'oxydation d'une mole de sucre dégage 2803 kJ. À partir de 1 kg de sucre, quelle masse de dioxyde de carbone et d'eau sera produite ?